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Single-fibre polymer composites 
Part I Interfacia/ shear strength and stress distribution in the 
pull-out test 

Z O N G - F U  LI, D. T. GRUBB 
Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA 

We have used Raman spectroscopy to measure the axial stress distribution along a fibre 
during a quasi-static single fibre pull-out test. The stress distribution at the debonding front 
during the progress of debonding gives the maximum interfacial shear strength zs directly. In 
addition, the stress distribution along the fibre after debonding can be used to evaluate the 
interfacial normal stress and the frictional coefficient. For the plasma treated high modulus 
polyethylene (PE) fibres used here, zs is found to be 28 MPa by this method, while the apparent 
mean interfacial shear strength % obtained from the regular single fibre pull-out test varies from 
3 to 15 MPa with the fibre embedded length /e. Stress distributions derived from the shear-lag 
theory fit the experimental data for fully bonded fibres well, giving values for the shear-lag 
constant K and the stress transfer length 1/13 [1]. According to the shear-lag theory, 
Zs = 13/e%coth(13/e). If 13 can be found for a given system from Raman spectroscopy, ~ can be 
evaluated from the pull-out test using this equation. 

The regular pull-out tests, corrected for residual stress and interfacial friction, give the same xs 
but not the same 13 or pull-out load as the slower Raman test. The shear-lag constant Kcan be 
expressed as a function of the matrix shear modulus and geometric terms. One of these terms is the 
effective interfacial radius, re, the radius at which the strain in the matrix equals the average matrix 
strain. Raman measurements indicate that re is small, only four times the fibre radius. This result is 
supported by polarizing optical microscopy. The model of Greszczuk [2 l, which assumes 
a uniform shear within an effective interaction thickness b~, gives a similar result. We find that 
b~ = 20 I~m, about twice the fibre radius. Using the pull-out test data, as for other fibre composites, 
bi and re predicted by shear-lag theories do not agree with the results of microscopy to this extent. 
In these cases r~ is much larger than the yield strength of the matrix and as neither treatment 
considers plastic deformation of the matrix agreement should not be expected. 

1. I n t r o d u c t i o n  
The interface between the fibre and matrix in fibre 
reinforced composites plays a very important role in 
determining composite mechanical properties. The 
goal of many composite studies is to tailor the inter- 
facial properties to achieve the best composite proper- 
ties. A strong interface improves the compressive 
strength and transverse tensile strength of the com- 
posite, but may be detrimental to tensile and fracture 
strength. This is because a matrix failure mode may 
become dominant [3]. Generally, fibre reinforced 
polymeric resin composites should have a good inter- 
facial shear strength (IFSS) to be acceptable products. 
To~ achieve the desired interface properties, fibre sur- 
face coatings and surface treatments are often 
adopted. Better understanding of the interface has led 
to more sophisticated practices of control and design. 
Examples are incorporation of an interphase having 
a modulus between that of fibre and matrix, and 
having a modulus gradient in the interface [4, 5] 

One key property is the interfacial shear strength 
(z,), which depends on the fibre surface properties and 
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the mechanical properties of the fibres and the matrix. 
The test methods most often used for determining zs 
are the fibre fragmentation test, the fibre push-down 
or indentation method, and the single fibre pull-out 
test. High modulus polymer fibres fibrillate on frac- 
ture. This makes it difficult to determine the exact 
fragmentation length in the fibre fragmentation test 
[6]. Indentation of the polymer fibre ends can also 
cause fibrillation instead of interfacial debonding. This 
leaves the single fibre pull-out test, which does not 
cause fibrillation, as the method of choice for deter- 
mining ~ of high modulus polymer fibres. In the test 
a length of fibre le is embedded in a matrix and pulled 
out, and the maximum stress ~p causing complete 
interfacial debonding is measured. It is normally as- 
sumed that the shear stress along the whole of the 
interface can be approximated as a constant, ~,. Then 
from a simple force balance: 

% = ~prf/21e (1) 

where re is the fibre radius. The value of % is often used 
as Ts, although it varies with the test geometry, and is 
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a strong function of the fibre embedded length le. This 
"determination" of interracial shear strength ignores 
stress concentrations, and Za is better described as the 
apparent mean interfacial shear strength. Before inter- 
facial debonding, the shear stress at the interface has 
a maximum where the fibre enters the matrix, and if le 
is long, the shear stress at the interface falls to zero 
within the composite. This is well known, and it means 
that pull-out tests with short embedded lengths will 
give a more realistic value of zs. 

To improve pull-out testing, very short embedded 
lengths may be used, and various models can also be 
used to obtain the true IFSS from z,. These are well 
summarized by D6sarmot and Favre [9]. Using 
a shear stress criterion for interfacial failure, the max- 
imum shear stress Zm,x at debonding is the true z~ and 
must be independent of le. According to shear-lag 
theory, ~ is related to the apparent interfacial shear 
strength as: 

tanh(13/~) 
":. = z , -  (2) 

131o 
This equation is derived and 13 is defined later in the 
paper. From this relation, T~ corresponds to x, at 
lo = 0 and it can be obtained from Za at any le when 
13 is known. One way to obtain [3 is to fit the experi- 
mental values of ~, versus lo to Equation 2. Results for 
Za at small l~ and a large set of data are required for an 
accurate determination of 13 and thus ~. If l~ is large, 
so that 131~ > 5, then tanh(13/e) ~ 1 and 

�9 o ~ ~ J ( N o )  = C/lo (3) 

Pitkethly and DoNe [7] use this approximation in 
a two stage fitting procedure, with data at large l~ 
giving a value for C. Rewriting Equation 2 as: 

~s(I~/C) = arctanh(~al~/C) (4) 

the slope of a plot of arctanh(zal~/C) versus l , / C  gives 
z~. Even using this method, data at small embedded 
lengths are required for an accurate determination of 
the interfacial shear stress. 

Test specimens with small l~ are difficult to produce. 
One method is to place a small drop of resin on 
a single free fibre and cure it [8]. Difficulties with this 
method are that the exact size of the drop is not easily 
reproducible and the classic shear-lag theory may not 
be applicable because of the complexity of the stress 
field in the small drop. Other methods involve dipping 
the fibre into liquid epoxy resin to a small controlled 
depth [9, 10]. In this case, the contact meniscus at the 
fibre entrance into the matrix is a problem in defining 
l~ and the bonding stress at the fibre end will contrib- 
ute to the fibre pull-out stress. The values of zs ob- 
tained by these methods at small l~ are often much 
larger than the yield shear strength of the matrix. 
Plastic deformation should then occur at the interface 
and the classic shear-lag theory no longer applies. The 
determination of z~ then lacks self-consistency and 
may not represent the true interfacial shear strength 
[10]. 

In this study we will show that the axial stress 
distribution along the embedded length obtained by 
Raman spectroscopy can be used to  calculate 13 and 
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thus zs. Raman spectroscopy has been used to 
measure the axial fibre stress or strain in a range of 
high modulus fibres [11-14] and the molecular stress 
distribution within fibres [15-18]. The principle is 
that when a tensile stress is applied to a high modulus 
fibre, bonds in the backbone of molecules stretch and 
bond angles increase. This makes the frequencies of 
Raman active modes decrease. The most significant 
frequency shifts arise from the stretching of bonds 
such as the aromatic and heterocyclic ring in aramids 
[11, 12], the C - C  bonds in poly(diacetylene) [13], 
and the C-C bonds in the graphite basal plane of 
carbon fibres [14]. In these cases the vibrational fre- 
quency shift is linear with stress all the way to fibre 
failure. Recently, the Raman spectroscopy of high 
modulus polyethylene (PE) fibres has been studied by 
Prasad and others [15-17]. They found that the C-C 
asymmetric stretch band shifts the most with stress, 
but at room temperature it shifts linearly only up to 
0.5 or 1 GPa, depending on the fibre type. Above this 
stress, plastic deformation occurs and the band shape 
changes. 

Raman spectroscopy has also been applied to 
measure the axial stress (or strain) distribution along 
fibres in composites, and to follow the micro- 
mechanics of load transfer from fibre to matrix. 
Galiotis et al. [19] used a model composite system 
containing one short poly(diacetylene) single crystal 
fibre in an epoxy resin matrix. They found that when 
the composite was loaded in tension the stress distri- 
bution along the fibre agreed well with shear-lag the- 
ory predictions [1], (Some unknown parameters were 
allowed to vary, so only qualitative agreement was 
demonstrated). Fan et al. [20] used Raman spectro- 
scopy to find that a thin coating of a silicone release 
agent does not affect the stress distribution. Jahan- 
khani and Galiotis [21, 22] investigated the stress 
transfer in a Kevlar fibre/epoxy composite both in 
tension and in compression. The load transfer length 
at interfacial failure and the interfacial shear strength 
were obtained by loading the composite to the strain 
at which interfacial debonding occurred. By compress- 
ing the model composite system, the compressive 
strain at which the fibre buckles within the matrix can 
be determined. A method based on this measurement 
has been proposed for measuring the compressive 
strength of Kevlar and carbon fibres [21, 23]. Al- 
though the technique is limited to near-surface fibres 
o r  transparent matrices, Raman spectroscopy pro- 
vides a unique in situ measurement of fibre stress in 
composites. 

Recently, Grubb and Li [24] have reported prelimi- 
nary results obtained by applying the Raman tech- 
nique to the single fibre pull-out test. The axial stress 
distribution in high modulus PE fibres and a value for 
the Zs were obtained. Meanwhile, Boogh et al. [25] 
studied the stress distribution in a high modulus PE 
fibre embedded in epoxy tensioned to a fixed strain. 
The efficiency of the load transfer was determined in 
terms of the load transfer length for different surface 
treatments and curing conditions. They showed that 
curing at a high temperature caused an increase in the 
stress transfer length or a decrease of interfacial shear 



strength. Their data did not demonstrate the existence 
of compressive residual stress in the fibres due to 
matrix shrinkage. We have investigated the residual 
stresses in fibres caused by curing shrinkage of the 
matrix and mismatch of the thermal coefficient of 
expansion. The effects of these stresses on the com- 
posite interface and stress transfer are reported in the 
second of this series of papers [26]. 

High modulus PE fibres are used in our model 
composites to investigate the interfacial shear strength 
using Raman spectroscopy. The fibres are easy to 
handle and are not damaged by absorption of the laser 
light. They also have a very high tensile strength, 
a small compressive strength and a very small thermal 
coefficient of expansion in the fibre direction. More 
important ~s a Raman spectrum free of fluorescence, 
and a comparatively weak interface to the epoxy 
matrix. This allows them to be pulled out of the 
composites from a large embedded depth l without 
significant plastic deformation at the interface. Other 
fibres, such as aramids, break when pulled from em- 
bedded lengths over 0.25 mm [8]. Untreated PE fibre 
composites have a too weak interface; the fibres used 
here are plasma treated. One extraordinary property 
of the PE fibres is their large positive thermal coeffi- 
cient of expansion (TCE) in the radial direction. It is 
approximately 13 x 10 -5 ~ [27], while that of the 
epoxy matrix is 6 • 10-5 ~ This will cause radial 
tensile stress at the interface on cooling from the 
curing temperature. 

2. Analyt ica l  aspects of single f ibre 
pu l l -ou t  test  

Among the many theoretical analyses of load transfer 
during fibre pull-out, [2, 28-38], the shear-lag analysis 
based on the assumption of pure shear first proposed 
by Cox [1] gives the simplest analytical solution [2, 
28-31]. Gray [39] reviewed a number of early works 
on shear-lag analysis. Several authors have shown 
that the stress distribution predicted by shear-lag the- 
ory agrees reasonably well with experimental distribu- 
tions [20, 22, 40]. Aksel et al. [41] compared the stress 
distributions obtained using finite element analysis 
with shear-lag analysis for a partially debonded inter- 
face. They showed that shear-lag analysis accurately 
predicts the fibre axial stress and the interracial shear 
stress when the frictional coefficients are small and the 
debonded length is much larger than the fibre dia- 
meter. Elaborate analyses using elasticity for the exact 
stress field have been performed by Muki et al. and 
Ford [32, 33]. Exact solutions are obtained only when 
the fibre and matrix are taken to be isotropic. Ford's 
solution differs from Muki's in the treatment of the 
stress singularity at the interface where the fibre enters 
the matrix. McCartney [34] smoothed the stress sin- 
gularity by averaging the stresses over the fibre and 
the matrix. He obtained approximate analytical solu- 
tions of the stress distributions for a fully bonded and 
for a partially debonded interface. Steif and Hoysan 
[35] analysed the load transfer for an imperfectly 
bonded interface by formulating the relative displace- 
ment at the interface into an edge dislocation problem 

and relating the interfacial shear stress to  the disloca- 
tion density. They obtained an analytical solution 
only in the case when the fibre and matrix have the 
same elastic properties. Sigl et al. [36, 37, 38] analysed 
the interfacial debonding process and fibre pull-out 
over interfacial friction and the energetics of the 
propagation of interfacial debonding. Aveston 
et al. [29, 30, 31] used the fibre axial stress and 
interfacial shear stress obtained from shear-lag ana- 
lysis to derive the strain energy involved in steady 
state interracial debonding. In the following we use the 
shear-lag theory to derive the stress distribution along 
the single fibre in an infinite matrix giving particular 
consideration to the fibre residual stress and to partial 
debonding of the fibre. 

The fibre pull-out configuration when the fibre has 
a fully bonded interface is shown in Fig. l(a), where 
x is the position along the fibre axis of the embedded 
fibre of radius rf. The fibre has an axial stress function. 
~f(x) and so the external stress applied to the fibre is 
Cro = ~f(0), assuming that the stress at the fibre cross- 
section is uniform. To keep the matrix surface at x = 0 
and the tensile stress positive when acting to- 
wards +x, the embedded fibre lies from - 1 to 0 and 
so all values of x in the useful ranges of the following 
formulae are negative. Consider xi(x) to be the inter- 
facial shear stress along the fibre, uf(x) the axial fibre 
displacement, and Urn(X, r) the displacement of matrix 
in the x direction as a function of radial distance r out 
from the fibre axis at x. The assumptions of the shear- 
lag theory are: 

(i) at the bonded interface u f ( x ) -  Urn(X, r0 = 0, i.e. 
there is no slippage between fibre and matrix at the 
interface--perfect bonding; 
(ii) at the debonded interface u f ( x ) -  Urn(X, r f )>  O, 
here the shear stress is taken by interfacial friction. 

The matrix curing shrinkage is treated as if it were due 
to hydraulic pressure acting on all sides of the matrix 
and not the fibre. When no external load is applied to 
the fibre, the fibre is free of stress at both ends, but has 
a residual strain equal to the matrix curing shrinkage 
at positions sufficiently far away from both the ends. 

Following Cox [1] in assuming that the stress state 
of the matrix is pure shear, the equilibrium equation 

~ r  (~o / j ~ T r  (~o 

of (x) of (x) 

- l c y r ~  0 ~ X -l ) X  

(a) (b) 
Figure 1 Schematics of single fibre pull-out. (a) Fibre axial stress 
distribution for a fully bonded interface. (b) Fibre axial stress distri- 
bution for a partially debonded interface. 
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for the shear stress in the matrix simplifies to 

~Tm(X , r) Zm(X,r) 
~r + r - 0 (5) 

The matrix shear stress can also be expressed in terms 
of the displacements urn(x, r) and the shear modulus 
Gm of the matrix: 

~Um(X , r)  
z~(x, r) = Grn ~---- r - -  (6) 

The above relations have the solutions of 

Tm(X , r) 

~ ( x )  

= zi(x)r f /r  (7) 

= {Uf(X) - -  b/r(X)} Gm 
rfln(re/rf ) (8) 

the matrix displacement along the where Ur(X) is 
X direction due to matrix curing shrinkage, and re is 
the radius of matrix at which the strain in the matrix 
equals the average matrix strain, so Um(X, re) = Ur(X) 
at re. 

For a single fibre in a finite specimen re should be 
the radius or some other dimension of the specimen. 
For an infinite matrix, according to Equation 5, "crn (x) 
becomes zero only when r-+ ~ ,  and this leads to 
a logarithmic divergence of the right hand side of 
Equation 8, and in the shear-lag constant K, defined 
below in Equation 13. Many experimentalists have 
tried to calculate the stress distribution using the spe- 
cimen dimension as re for a single fibre composite 
specimen [20, 22, 42]. In the original work of Cox, the 
fibre volume fraction is large and re is taken as the 
mean separation of fibres [-1]. For fibres closely 
packed into an hexagonal array, re/rf = 2, 
Um(X, 2rf) = Ur(X), according to Equation 8. This 
means the matrix shear stress at r = 2rf is negligible. 
But according to Equation 7, the matrix shear is 
zt(x)rf/re equal to one half the interface shear stre~s, 
�9 i(x). The effect of this half the z~(x) on local displace- 
ment is not negligible. 

Clearly Cox oversimplified the matrix stress field by 
assuming pure shear stress in the matrix. In reality, the 
shear stress in the matrix drops quickly. It reaches 
zero a few fibre diameters away from the fibre, and this 
can be observed directly by optical microscopy of the 
stress birefringence. Our later determination of K also 
shows that re/r f is small ( ~  4), even for a sample 
containing a single fibre. Budiansky et al. [31, 41] 
assumed that a matrix cylinder with outer radius re 
can be abstracted from the infinite matrix and concen- 
trated all of the axial stress-carrying area at re while 
assuming the matrix in the region supports pure shear 
stress ~rn(x, r). If re/rf is sufficiently large, say over 5, 
then the effect of the fraction of ri(x) on matrix dis- 
placement beyond re can be negligible. Greszczuk 1-2] 
assumes that there is an effective width to the inter- 
face, b~, beyond which the fibre has no influence on 
the matrix, and that the shear stress is constant within 
this region. The shear-lag constant expression then 
becomes 

~U(x, z) GmAU(x)bi O) Tm(X,Z ) ~-- Ti(X ) = Orn ~-Z - -  

Gm 
K = b~-. (10) 

The classic shear-lag analysis first proposed by Cox 
assumed the interfacial shear stress 

�9 i(x) = K{uf(x)  -- urn(x)} = K A u ( x ) ,  (11) 

where urn(x) is the mean.matrix displacement that 
would be present if the fibre was replaced by matrix. 
A simplification can be made by treating the load as 
uniformly distributed on the cross-section of the 
matrix, so that 

(3"0 Af 
Urn(X ) = (8 a + 8r)X = X + arx (12)  

Em Af + A m 

where ea is the strain due to the external load, Ar and 
Am are the cross-sectional areas of the fibre and 
matrix, respectively, and e~ is the matrix curing shrink- 
age. For a single fibre pull-out specimen, Af ~ Am, SO 
Sa is negligibly small, and urn ix) is simply "identical to 
Ur (X). Then 

Gm 
K = r f l n ( r e / r f )  (13) 

A force balance at the interface gives the relation- 
ship between the longitudinal stress on the fibre o-f (x) 
and the interracial shear stress zi (x) as 

do-f (x) 2zi(x) 
- ( 1 4 )  

dx rf 

Substituting for q(x) from Equation 8 and differenti- 
ating to go from displacements u(x) to strains e(x) we 
obtain: 

d2o-f(x) 2K 
- -  {Sf(X) - -  8m(X)} 

dx 2 rf 

2K 
- {err(X) -- e~Ef} (15) 

Efrf 

where Ef is the axial fibre modulus and er is the matrix 
shrinkage strain, a constant. This equation has solu- 
tions of the form: 

(Yf(X) ~--- EfSr + Acosh(13x) + Bsinh(13x) (16) 

A and B are coefficients to be determined by the 
boundary conditions, and 

~ / 2 K  (17) 
]3 = Ef rf 

If the deformations are elastic, then Ef~ is simply 
equal to the axial residual stress (o-r) of the fibre. When 
the fibre is perfectly bonded to the matrix along its 
entire length, one boundary condition is err(O) -- Cyo. 
Another boundary condition satisfies the global axial 
load balance in the specimen at x = - l: 

o-f( -- 1)Af + O'm( - -  I)Am = (YoAf + EmgrArn (18) 

Because Am >~Af, the additional stress in fibre and 
matrix due to applied load is negligible, and 
cyf( - l) = %. Then 

o-f(x) = o-, + (o-o - o-r){cosh(13x) 

+ coth(13/)sinh(13x)} - 1 _< x < 0 (19) 
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Ti(X) ~ ( O  0 - -  O'r) { ([SX) + coth (131) cosh(13x)} s inh  

(20) - - I N x < O  

Xmax = Zi(0) = ~ ( O o  -- %)coth(13/) (21) 

(O0 - -  (Yr)rf --  lf] ,(x)dx 
tanh([sl) 

(22) 
= Zmax 131 

Here Zmax and Z~v~ refer to the maximum and average 
interfacial shear stresses at any given external load. 
When debonding begins, Equation 22 becomes the 
same as Equation 2; "Cm,~ = %, but z,~r differs slightly 
from Za given in Equation 1 because the residual stress 
or is ignored in Equation 1. 

For long fibre embedded lengths, where the axial 
stress in the fibre falls to the residual stress well before 
the end of the fibre, l>_ 5/[5, coth([sl)~ 1, and the 
above equations simplify to: 

- l < x < _ 0  (23) O'f(X) = O" r + (O O - -  cr,)e ~ 

zi(x) = ( o 0 - O r ) e  ~x --l_<x_<O (24) 

Tma x ~--- ~-~ ((3" 0 - -  Or) (25) 

rf "Cma x 
X.w = ~ ( o 0 - o ~ ) =  131 (26) 

Now let us consider the case of a partially debonded 
interface, as illustrated in Fig. l(b). The debonded part 
extends from x = 0 to x = - la. For the bonded part 
of interface from - Id to -- l, Equation 14 still holds 
and its solution has the same form as Equation 16. 
One boundary condition is still that of( - I) = or, 
and the other is based on the assumption that the 
interfacial shear strength ~s is a material constant. 
Then interfacial debonding occurs when the max- 
imum interfacial stress reaches this value, and it occurs 
at x = - ld. The shear stress at the point of debonding 
will be infinite if the crack tip is sharp [33]. However, 
plastic deformation at the tip will reduce the stress at 
the tip to a finite value. 

rf 
zi( -- ld) = ~ (dcyf/dx)x=_td = zs (27) 

The upper limit of % is the matrix yield strength. The 
results for the coefficients A and B, and for the fibre 
axial stress in the bonded region are: 

2T~ 

A = 13r f {co th (131)cosh(~ l ) -  sinh(13/)} (28) 

B = A coth ([31) (29) 

2~)" tanh(13l)cosh(13x ) + sinh (l~x) "~ 

+ o~ -- l < x <_ -- la (30) 

Again, for long fibre embedded lengths the axial 
stress in the fibre falls to the residual str~ess well before 

the end of the fibre. That is, for l > 5/13, coth (13t) ~ 1 
and the expression for fibre stress then simplifies 'to: 

2Zs 
of(x) = o, + ~exp[13(x + ld)] 

- - l < x < _ - - I d  (31) 

O d = Of( - -  /d) = O'r + 2Ts/13rf (32) 

Note that of(-,-Id) is independent of I and ld, if I is large. 
Along the debonded part of the interface, the fibre is 

being pulled out against friction, of(x) depends on the 
frictional coefficient, f and normal stress, N(x), if N(x)  is 
compression. Assuming Coulomb friction, a simple force 
balance if deformations remain elastic, and that the fibre is 
still in contact with the matrix gives: 

doe(X) _ 2 f N ( x )  (33) 
dx rf 

N(x)  is proportional to the fibre normal strain, ei(x), 
caused by the misfit between fibre and matrix. Following 
Timoshenko [44], N ( x )  in a shrink fit configuration 
with no external load applied to the fibre is given by 

~(x) 
N(x)  = (34) 

(1 + Vm)/E m + (1 - -  Vf)/Ef 

where vf and Vm are the Poisson's ratios of fibre and 
matrix, respectively. Pinchin and Tabor 1-45] applied this 
relation to the case when an external load is applied to the 
fibre. They split gi(x) into two components: eo which is the 
misfit strain when no external load is applied and gl(x) 
which is due to the lateral contraction of the fibre as it is 
stretched axially, go is due to differential thermal contrac- 
tion, matrix curing shrinkage or the misfit of an irregular 
diameter fibre [263. ca(x) will be linear with the local 
longitudinal strain of~El. 

gi = e.o - v fo f (x ) /E f  (35) 

N(x)  = No -- ~veoe(x) (36) 

where 

/ E f ( 1  + V m  1--VfX] -1  
= 1 /  \ E ~ - m  + Ey / and No = ~eo 

Tsai and Muri [38] analysed the exact stress field in 
the debonded region in more detail for a finite volume 
fraction of fibres. When the volume fraction is set 
equal to zero, their expressions for ~ and N ( x )  are 
exactly the same as above. Substituting this expression 
for N ( x )  into Equation 33 and setting of(--Id) = Od, 
which is defined in Equation 32, 

of(x) = ? + ( o a - - ? ) e x p [ - - ( x ( / d + X ) ]  

- -  1 d "< X _< 0 (37) 

where y = N o / ( V  f ~), (X = 2fvf ~/r f .  The applied tensile 
stress becomes 

O O = 'y "1- (O d - -  y)exp( - (Xld) (38) 

This relates debonding length ld to the external fibre 
stress. 

When debonding is complete, friction is established 
over the whole fibre. Before the fibre slips, the external 
load is carried over an embedded length/eff, called the 
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effective frictional stress transfer length, where 
(re( - -  /eft) = 0. T h e n  

(re(X) = y{1 - e x p [  - ~(/eff nt- X ) ] }  

- -  l~ee -< x _< 0 ( 3 9 )  

When l,ff approaches the total embedded length lo, the 
fibre begins to slip out, l~rf = lr and the external load 
decreases as lo falls. 

(ro = y [ 1 - e x p ( - M ~ ) ]  (40) 

We will show in Part 2 of this paper that a and 3, can 
be determined by curve fitting the experimental stress 
distributions obtained by Raman spectroscopy [26]. 
Once ~ and y are known, No a n d f c a n  be calculated. 

There are two criteria applied to the initiation of 
interracial debonding [9, 10]. One is the maximum 
interracial strength criterion, which states that the 
interface debonding initiates when Zm,x approaches ~,. 
This has been used by Aksel et al. [41] to derive the 
debonded length and in the above analysis, for 
example in deriving the boundary conditions for 
a partially debonded fibre. According to this criterion, 
z~ is a material constant. With this criterion and ne- 
glecting effects at the end of the embedded fibre, we 
can take l -- le, then the pull-out stress (rp will be 

2z~ tanh(13/~) + (r, (41) 
(rP - -  r f13 

( 

Razor cut 
(a) (hi 

I  per o,am, i l l /  r e  , ,, 
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/ ' !  / 1  
i " "  i i t  " [ I I I I  Matrix | Lower clamp ] [I I 

(c) (d) 
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Figure 2 Schematic of single fibre pull-out specimen preparation 
and pull-out test. (a) Silicone rubber mould, (b) placing a fibre into 
mould, (c) moulded single fibre pull-out specimen, (d) single fibre 
pull-out test, (e) silicone rubber mould for pull-out specimen of 
smatl embedded fibre length, (f) fibre pull-out from a thin sheet of 
matrix. 

when friction can be neglected (true if the embedded 
length le is small). Using Equation 30 it is found that 
(rd is constant until all but the last part of the fibre, 
length approximately 1/13, is reached. Friction is im- 
portant for long le, 131~ >> 1; in this case, the last part of 
the fibre where (ra drops can be neglected. The (ra in 
Equation 37 can be replaced with (rp at 131~ >> 1, 2~s/13rf 
and la ~ l~ at the maximum value of (ro. The peak 
pull-out stress when friction cannot be neglected is then 

(rP = Y + ~,rf13 + (rr - -  Y e x p ( -  czt,) (42) 

The other criterion for the initiation of interfacial 
fracture is the interfacial fracture energy criterion. 
This states that interfacial debonding initiates when 
the strain energy in the fibre pull-out system ap- 
proaches the interfacial fracture energy, Gi. It has been 
discussed by several authors [36-38]. Piggot has 
argued that the energy criterion is appropriate be- 
cause the interfacial shear stress was found to exceed 
the matrix yield strength for many composites [46]. 
Based on Piggot's expression for zero free fibre length, 
D~sarmot and Favre [9] obtained the following ex- 
pression for the debonding stress with the free fibre 
length of Lf: 

13 GiEf Ie/rf 
% = 2 coth(13/~) + 13Lf (43) 

They found that their experimental data did not fit 
this equation and therefore chose the stress criterion 
for debonding [9]. We find that this expression can fit 
our experimental data fairly well, but the fit gives 
standard deviations for 13 and Gi a few times larger 
than those for 13 and zs using the stress criterion. In the 
rest of this paper we will use the stress criterion. 

.3. Experimental procedures 
3.1. Mater ia ls  and spec imen preparation 
The fibres in these fibre composites were commercial 
high modulus polyethylene materials, Spectra 900 and 
Spectra 1000, produced by Allied Signal. The fibres 
were treated with an ammonia plasma for improved 
adhesion [47]. DGEBA-type epoxy resin, DER 331, 
and tetraethylene pentamine curing agent, DEH 26, 
were obtained from Dow Chemical Company. They 
were mixed stoichiometrically according to the manu- 
facturer's specifications. 

The single fibre pull-out specimens were prepared 
using a silicon rubber mould based on the mould 
technique developed by Li and Netravali [48]. Fig. 2 
illustrates the procedure schematically. First, a metal 
die is made in the required shape for the epoxy, and 
a silicone rubber mould is cast around the die. After 
the rubber mould is cured and the die is removed, 
a razor cut is made in the mould where the fibre is to 
go. The cut is made to exactly half the depth of the die 
cavity. Fig. 2(a). Then the mould is flexed to open the 
cut into a V-shaped crack and  a fibre under slight 
tension (from a small weight) is placed straight in the 
cut, as shown in Fig. 2(b). The mould is then released 
to grip the fibre. The mixture of epoxy resin and 
curing agent is then cast and cured in the mould 
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around the fibre. The epoxy curing time is 4h at 
a curing temperature of 100 ~ and at least overnight 
at room temperature. After curing, the epoxy can be 
separated easily from the mould and removed by 
bending the mould slightly. The lower part of the fibre 
is trimmed using a razor blade, and the specimen, as 
shown in Fig. 2(c), is ready for the fibre pull-out test. 

Specimens used for Raman spectroscopy or for 
photoelastic observation must have flat polished sur- 
faces to reduce light scattering and allow accurate 
focusing. Time consuming metallographic polishing of 
each specimen is often required, but here only the 
original metal die is polished. The surface of the 
molded epoxy resin made this way is smooth so that 
no further polishing is necessary. Another important 
advantage of the moulding technique for the single 
fibre pull-out test is that there is no contact meniscus 
where the fibre enters the epoxy. In other sample 
preparation methods currently used for this test, 
a fibre is inserted into the free surface of the epoxy 
[9, 10] and the surface does not remain flat. A flat 
surface is particularly important when the embedded 
length le is small. For displacement controlled pull-out 
tests with small le, the fibre is embedded in two pieces 
of epoxy with different embedded lengths. The piece 
with longer le acts as a tabbed grip for the fibre and 
pull-out is suppressed by the clamping forces. The free 
fibre length is the separation of the two cavities, 
10ram in these tests. 

These modifications to the original moulding tech- 
nique [48] work for embedded lengths down to 
0.5 ram. Further developments allow the preparation 
of specimens with l, at least as small as 0.2 mm. A thin 
metal sheet is used as the die to define the cavity in the 
silicone rubber mould. The thickness of the sheet 
defines the cavity width and thus the fibre embedded 
length. After the mould is made, a small reservoir 
where a drop of liquid epoxy is to be deposited is cut 
at one edge of the cavity, as shown in.Fig. 2(e). The 
mould is sprayed with a mould release agent so that 
the cured epoxy can be removed from t h e  mould 
easily. The mould is then heated to remove residual 
solvent from the release agent. This would cause bub- 
bles in the epoxy during curing. The epoxy drop is 
then deposited in the reservoir and easily fills the 
narrow cavity. The result is a thin sheet of epoxy with 
the fibre passing through the middle of the sheet. This 
geometry begins to approach that of the micro-bond 
test [8], where the fibre is pulled through a drop of 
epoxy, but in this method the sample geometry and 
the loading geometry are under good control. The 
lower part of fibre is not trimmed in this specimen 
because trimming may cause debonding of a signifi- 
cant part of the interface when l~ is small. 

The micro-bond and other such tests must have 
a distribution of bead sizes and embedded lengths. 
The mean value of za from these tests has a large 
coefficient of variation, over 20% [49], and there have 
been a number of serious questions regarding inter- 
pretation of the derived za and the limitations of this 
method [50]. The embedded length in the method 
described here is under precise control and a number 
of specimens of the same embedded length can be 

prepared to obtain a mean value of x, for a given 
embedded length. The coefficient of variation is found 
to be less than 20% when only ten specimens were 
tested for each embedded length. These results will be 
shown in Fig. 6. The main problem with this method is 
that it is difficult to remove the sample for the mould 
without bending or damaging the fibre. This currently 
limits the application to more flexible fibres, such as 
high modulus polyethylene and aramid fibres. 

3.2. Fibre p u l l - o u t  t es t s  
A small loading frame designed to fit on the micro- 
scope stage of the Raman equipment and capable of 
loading samples by dead weights or controlled strains 
was used for single fibre pull-out during Raman and 
photoelastic observation. Regular single fibre pull-out 
tests were carried out on an Instron tensile machine, 
model 1122. Fig. 2(d) shows a schematic of these fibre 
pull-out tests for specimens with le _> 1 mm. The fibre 
is embedded in a bridge-shaped piece of epoxy which 
is easily gripped by a clamp without stressing the test 
region. The other end of the fibre is gripped by 
a capstan jaw [51] which is clamped in the moving 
cross-head of the Instron. Fig. 2(f) illustrates the fibre 
pull-out test for specimens with l~ < 1 mm. The thin 
sheet of epoxy is placed under a microvice. The fibre is 
pulled up through a gap of 0.5 mm between the two 
plates of the microvice at a strain rate of 0.02 min-  1. 
For all these tests, 10 specimens were tested to obtain 
a mean value of z, for each embedded length and fibre 
surface and epoxy curing condition. The diameter for 
each fibre was obtained using a vibroscope following 
ASTM D1577-79. Raman spectra were taken at differ- 
ent positions along the embedded fibre while it was 
held under load using a dead weight or held at a fixed 
strain. For fixed strain tests the fibre was embedded at 
both ends, with a free fibre length of 10 ram. Signifi- 
cant stress relaxation takes place when the fibre is 
tensioned at a fixed strain. Samples were tensioned 
several times to approximately the same stress value 
until no significant stress drop occurred (Fig. 3). 
A stable debonding length is achieved after a few 
cycles of reloading. The loading process is called the 
quasi-static process. When a specimen is loaded by 
a dead weight, creep occurs at the interface, causing 
interracial debonding at a lower external load than 
that obtained from the regular test. Debonding is 
stabilized within a few hours, or continues to 
completion. 

It has previously been shown that the Raman 
1063 cm-  1 peak frequency shifts at - 5 _+ 0.5 cm-  1 
GPa-1 ,  proportional to the axial fibre stress up to 
tensile stresses of 0.5 GPa  for Spectra 900 fibres and 
1 GPa  for Spectra 1000 fibres [15, 17]. It is important 
to keep the maximum fibre stress during loading be- 
low 0.5 GPa  or 1 GPa  for Spectra 900 and Spectra 
1000, respectively, if Raman shift is to be used as 
a stress gauge. 

3.3. Ram an  s p e c t r o s c o p y  
Raman spectra were obtained using a SPEX 1877 
Triplemate spectrometer, equipped with a holo- 
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Figure 4 Stress versus displacement of a single fibre pull-out. The 
main plot shows the first 1 m m  of displacement, and the inset is the 
whole curve. 

graphic grating of 1800 grooves m m -  1 at the spectro- 
graph stage. The source is a 2W Ar + laser (Coherent 
Nova 90-5) operating at 514.5 nm. The laser is focused 
on the specimen using a Leitz microscope with 
a 10 x objective to a spot ~ 10 gm in diameter. The 
power of the laser beam at the specimen is about 
25 roW. The detection system is a diode array cover- 
ing 400 cm-1, an E G & G  optical multi-channel ana- 
lyzer. The spectra are calibrated using a neon or argon 
light source. The wavenumber shift of the peak of the 
C - C  asymmetric stretch band is used to measure the 
tensile or compressive axial stress in the fibres. Meas- 
ured values of the peak position of this band in free 
unstressed fibres taken at different times varied from 
1063 cm-  ~ to 1064.5 cm-  1. This is a significant Vari- 
ation, so the position of the peak of the free unstressed 
fibre was always measured and the peak shift relative 
to that value is quoted, not the absolute peak 
wavenumber. 

4. R e s u l t s  a n d  d i s c u s s i o n  
4.1. Regular single fibre pull-out test 
Fig. 4 illustrates the stress-displacement curve for an 
ammonia plasma treated Spectra 900 fibre in an epoxy 
matrix cured at a temperature of 100 ~ The free fibre 
length was 10 ram, the constant rate of displacement 
was 1 mmmin  - i  and the embedded length le was 
5 mm. Similar curves were obtained for all values of 
le > 2 mm. Most of the interesting features occur in 
this curve before the displacement reaches 1 mm, so 
the main plot is an expanded view of this part. The 
inset shows the whole curve. Initially the fibre is per- 
fectly bonded to the epoxy matrix and the stress 
increases linearly with fibre displacement. The compli- 
ance of the free fibre is much greater than that of the 
composite, so this part of the curve relates to the 
elastic deformation of the free fibre. There is a stress 
drop at the point marked "Debonding", and at this 
load interfacial debonding starts at the point where 
the fibre enters the matrix. The stress drop can be 
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detected when the free fibre length is small. Debonding 
from the matrix increases the compliance, as it in- 
creases the fibre length that is largely free (apart from 
the effects of friction). If the original free fibre is too 
long the effect will be too small to detect. 

From then until the point marked "Pull-out" the 
debonding propagates along the fibre as the stress 
rises again, more slowly. The stress is increasing by 
a small amount because the extra stress is only re- 

q u i r e d  to overcome friction, to apply the stress 
required for debonding to a further part of the fibre. 
At the same time the compliance of the system is 
increasing as more of the fibre is weakly connected to 
the matrix. The pull-out process was monitored using 
a polarizing optical microscope. Fig. 5 shows a photo- 
micrograph taken without polarizers and the same 
region taken with polarizers crossed at 0 and 90 ~ to 
the fibre direction. The fibre is the same as that used in 
Fig. 4 and the micrographs were taken when the fibre 
was at the partially debonded stage, between the 
points marked "Debonding" and "Pull-out" in that 
figure. In the debonded part of the composite, the 
interface appears in strong contrast as a dark line in 
the photomicrograph taken without polarizers. In the 
bonded region the interface is visible only with diffi- 
culty. We can see the propagation of the fibre de- 
bonding as the dark lines on either side of the fibre 
extend. This can be related directly to the stress-dis- 
placement curve. The bright region around the fibre at 
the debonding front in the micrograph taken with 
crossed polarizers shows where the matrix is birefrin- 
gent due to stress. It is most distinct when the orienta- 
tion of the polarized light is at 0 or 90 ~ to the fibre axis. 
This shows that the molecular extension or compres- 
sion is at + 45 ~ due to a shear stress concentration 
near the debonding front. 

At the point in Fig. 4 marked "Pull-out" there is 
a large stress drop. The peak stress at this point is the 
fibre pull-out stress, crp (Equation 1). Here the de- 
bonding is complete, and the fibre suddenly slips 
through the matrix until a new equilibrium is reached 
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Figure 5 Photomicrographs of a partially debonded fibre. The fibre 
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a dark line. (b) Polarized light; the same region with polarizers 
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are significant shear stresses in the matrix. 

where the stress is lower and the resistance to fibre 
motion is due to friction. Pull-out then continues 
against the resistance of interracial friction, until the 
whole embedded length is pulled out of the matrix. If 
the free fibre length is large, this part  of the curve can 
show wide variations, from immediate complete pull- 
out to large stick-slip type oscillations of load [47]. 
These are due to the interaction of the stored elastic 
energy of the free fibre and the frictional resistance of 
the matrix, and are best avoided by using small free 
fibre lengths. Once all the fibre is debonded, there is no 
region of birefringence to be seen. 

Fig. 6 shows the experimental fibre pull-out stress 
crp and the average or apparent  interracial shear 
strength, ~,, derived from Equation 1 as a function of 
embedded length, le. It  can be seen that cyp increases 
continuously with l+. The increase is proportional  to 
embedded length at 0.25 and 0.5 mm, and the slope 
then falls. According to Equation 1, % is approxim- 
ately the same for both the two smallest lengths, and 
then falls. When the embedded length is less than 
1 mm, the fibre is fully pulled out catastrophically 
upon initiation of interracial debonding. This should 
happen at some small value of le, since the free fibre 
length is kept constant. In proport ion to the embed- 
ded length, the free fibre length is becoming larger and 
elastic energy stored in the free fibre will dominate the 
pull-out process. When the embedded length is larger 
than 1 mm, the fibre pull-out proceeds as described 
above by a stable propagation of the debonding a long 
the interface. The effect of fiiction may therefore be- 
come increasingly important  at lengths over 1 ram. 
The measured pull-out stress Cyp is the stress for initia- 
tion of debonding plus the stress required for propaga- 
tion of the debonding. The fibre pull-out stress 
increases much more slowly during this propagation 
step (Fig. 4) so Op increases slowly with l~ and %, and 

25 

~. 20 

2,10 

t I 

0 ~ - ' - - " - ~ - ~ "  - ~ - = ~  0 1 2 3 4 5 6 
(b) Fibre embedded length, I, (ram) 

Figure 6 Fibre pull-out stress op and apparent interracial shear 
stress (IFSS), % as a function of fibre embedded length l~. (�9 raw 
data (Or) corrected for friction (----)  fit through all raw data 
( - - - )  fit through corrected data ( ) fit through corrected data, 
assuming static stress transfer length. 

averaged over the embedded length, becomes smaller. 
The stresses indicated as solid stars are estimates of 
the pull-out stress when the effects of friction are 
removed (this is oa). Open stars in the lower part of 
the figure are values of % from pull-out stresses 
corrected for friction and for residual stress. These 
corrected data and the curves fitted to the data use the 
results from Raman spectroscopy and will be dis- 
cussed in the following section. 

4.2.  Raman s p e c t r o s c o p y  app l i ed  to  f ib re  
p u l l - o u t  

Fig. 7 shows the Raman spectra of a free single fibre, of 
the pure epoxy and of a single fibre embedded in the 
center of a 1 mm thick block of epoxy. The three peaks 
a t  1064, 1135, and 1295cm -1 from the free fibre 
correspond to the C - C  asymmetric and symmetric 
stretching modes, and the C - H  twisting mode, respec- 
tively. The C - C  symmetric stretch band in the fibre is 
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weaker than the C - C  asymmetric stretch bands; it was 
stronger in previous studies [15] using a very similar 
system. It  can be seen from Fig. 7 that only the C - C  
asymmetric stretch band is well separated from the 
bands of the epoxy spectrum. The other Raman bands 
in the polyethylene spectrum interfere or super- 
impose with bands of the epoxy spectrum. The C - C  
asymmetric stretch bands were fitted with a 
Gauss ian-Lorentz ian  sum function and a quadratic 
background t o  exclude the slight interference of the 
epoxy background. 

Fig. 8 shows the shift of the C - C  asymmetric stretch 
bands in wavenumbers and on the right hand vertical 
axis the fibre axial stress derived from these shifts. The 

negative shift value represents the fibre in tension 
while the positive shift value represents the fibre in 
compression. The horizontal axis is the position along 
the fibre, which was an ammonia  plasma treated 
Spectra 1000 fibre held under a fixed strain. The fibre 
enters the epoxy matrix at x = 0. The interface be- 
tween the fibre and epoxy is partially debonded, and 
the debonding interface is 0.46 mm along the fibre 
entry surface into the matrix. The fibre has a Constant 
compressive stress of 0.17 G P a  at l > 1.5 mm. This is 
the residual axial compressive stress ~, caused by the 
difference in axial TCE of the fibre and matrix. Along 
the debonded part  of the fibre the relative frequency 
shift changes slowly at about  2 cm - 1 m m -  1. This cor- 
responds to an interracial shear stress of approxim- 
ately 2.8 MPa. The data for this debonded part  of the 
fibre has been fitted with the expression derived for 
frictional resistance (Equation 37). However, there are 
too few data points to produce reliable information 
about  the normal stress and frictional coefficient from 
this plot. The stress drops much more quickly from the 
debonding front along the bonded interface. The data 
for this bonded part  of the fibre was fitted with the 
shear-lag theoretical expression for large l (Equation 
31), since l >  5/13. A non-linear least square fitting 
program was used. The fit is a good one, as shown in 
Fig. 8, and we obtain: 

13 = 7 . 4 _ _ 2 m m - 1  o, = - 0.17 __+ 0.03 G P a  

2~s/rf = 4 _ + l M P a l a m - 1  

Taking r = 14 gm gives zs = 28 + 8 MPa,  which is 
twice the average interracial shear strength obtained 
f romthe  direct pull-out test of an embedded length of 
less than 0.5 mm, as shown in Fig. 6. To mimic the 
averaging over le = 0.3 mm, we take a linear least 
squares fit of the relative frequency shift at positions 
from 0.46 ram, which is the debonding front, to 
0.76 mm along the bonded part  of the fibre. The slope 
is 9.5 +_ 2 c m - l m m  -1 and the average interfacial 
shear strength is 13.3 _+ 3 MPa.  This is the same as 
that obtained by direct fibre pull-out tests at embed- 
ded length le = 0.3 mm. According to Equation 14 the 
interracial shear stress profile along the fibre is 
the differential of the tensile stress. Differentiating the 
fitted curves in Fig. 8 gives the interracial shear stress 
profile shown in Fig. 9. The shear stress concentration 
at the position of the debonding front is clearly visible 
in this figure. It can also be seen from Figs 8 and 9 that 
the effective stress transfer length, where the axial 
stress drops by 90%, is only 0.3 mm. 

How does this Raman result compare to those ob- 
tained from the normal pull-out test, and can the two 
tests be combined? Unfortunately a direct comparison 
may not be meaningful, because of the different time 
scales involved. The pull-out stress is measured after 
30 s in a normal test (Fig. 4), and after 3.104 s in the 
Raman experiment (Fig. 3). Both fibre and matrix are 
viscoelastic, and may creep, so that mechanical tests 
on such different time scales should not give the same 
results. The simplest procedure for the analysis of the 
apparent  IFSS data shown in Fig. 6(b) is to fit all the 
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points to Equation 2, without any corrections. The 
result is shown as the dashed line in Figs 6(a) and (b), 
which gives 13 = 1.3 mm -~ and "% = 15 MPa. Taking 
residual stresses into account, that is, using Equation 
22 instead of Equation 1 to define the apparent IFSS, 
changes these results considerably. Adding the resi- 
dual compressive stress determined by Raman spec- 
troscopy, 0.17 GPa, to the pull-out stresses shown 
in Fig. 6(a) increases the derived IFSS from 15 GPa  to 
21 • 3 GPa  and increases 13 to 1.8 ram-1. 

The pull-out stress C~p at 1~ > 1 ram, is increasing as 
shown in Fig. 6(a) only because of friction, and Equa- 

Figure 9 Interfacial shear stress profile obtained from the theoret- 
ical functions as shown in the previous figure, fitted to the experi- 
mental data. 

TABLE I Original and corrected values ofza for different embed- 
ded lengths re. ~s is calculated by taking the Raman value of 13 

le(mm) za(MPa) xa(MPa) ~.(MPa) 
corrected for corrected for 
residual stress friction 

x~ (MPa) 

0.3 14 18.3 18.3 42 
0.5 15 17.4 17.4 64 
1.0 8 9 8.9 65 
2.0 6 6.6 4.6 68 
5.0 3.5 3.7 2.0 74 

tion 2, being used to fit these results, does not take 
friction into account. To correct for the effects of 
friction, the data at le > 1 mm is fitted to Equation 42 
using reasonable values of ~ and 7 [26]. The fitted 
value of the debonding stress CYd, which would be the 
pull-out stress in the absence of friction, is then used 
instead of the measured pull-out stress. Because there 
are so few data points this is little more than using the 
value of crp at Ie = 1 mm for all longer embedded 
lengths, and the procedure gives the data points 
marked as stars in Fig. 6(a). The stars in Fig. 6(b) are 
data corrected for both friction and residual stress. In 
Fig. 6(b) the fit to Equation 2 is improved, but the 
effect on the derived parameters is not so great, 
the IFSS becomes 23 _+ 3 GPa  and [5 increases to 
2.4 4-0.2 m m - t .  This is because the friction correc- 
tion changes data at large embedded lengths, while the 
residual stress correction is more important at  small 
embedded lengths, see Table I. 

If we assume that the value of:[3~= 7.4 m m -  t ob- 
tained from the semi:static Raman experiment is 
valid for the dynamic pull-out tests we can use 
Equation 2 to estimate xs from Za. The results are 
shown as the last column in Table I. The derived IFSS 
values are very high, higher than normally accepted 
for this system, and much higher than the bulk shear 
strength of the matrix. The fit to the pull-out test data 
with this value of 13 is shown in Fig. 6(b) as a solid line, 
and it is obviously not in good agreement with the 
data. This fitted curve gives a Xs of 50 +_ 5 MPa. 

It was observed during the reloading process before 
the Raman spectrum was taken that interracial de- 
bonding occurred at an external stress of 0.6 GPa. 
This is only half the debonding load during the regular 
pull-out tests, as shown in Fig. 6. Normal expectations 
are that slower experiments will give lower strengths 
and that creep will reduce local stress concentrations 
- - in  this case, that means an increase in the stress 
transfer length, smaller 13. The analysis above shows 
that the IFSS is similar in the range of time scales 
investigated, but that 13 appears to be greater in the 
slower experiment. The shorter stress transfer length 
then results in a smaller pull-out load for the same 

IFSS. According to Equation 17 13 = J2K/ (Efr f )  
where K = Gm/r  f ln(rUr f ) (Equation 13). In a linear 
elastic case, 13 depends on the ratio of matrix modulus 
to fibre modulus and will increase over time if the 
softening of the fibre exceeds that of the matrix. The 
shear-lag model which is the source of these expres- 
sions depends on the relative displacements of fibre 

TABLE II [3, z~ and other parameters for a variety of composites 

Reference Composite system [3 ~ Ef rf Em K bi re/rf 
(mm-1) (MPa) (GPa) (gin) (GPa) (GPamm-t)  gm 

This study Polyethylene/epoxy 7.4 57 70 14 1.5 28 20 4 
This study Polyethylene/epoxy 2.4 23 70 14 1.5 2.8 200 106 
[9] S-glass/phenolics 26.1 152 85 4.5 3 130 8.7 7 
[9] Graphite/polyimide 19.4 95 280 2.5 3 132 8 30 
[7] Graphite/epoxy 21.2 124 330 2.5 3 186 6.3 11 
1 - 7 ]  Graphite/epoxy 30.1 174 280 2.5 3 317 3.5 4 
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and matrix. When creep of the polyethylene fibre is 
involved it is the section of fibre under greatest axial 
load, at its entrance into the matrix, that will extend 
the most. This increased displacement will allow more 
stress transfer to the matrix, and so may reduce the 
stress transfer length and the pull-out load. 

Other important parameters can be evaluated from 
the curve fitting where [3 is known. For Ef = 70 GPa 
[15] and Em = 1.5 GPa, or Gm= 0.56 GPa [43] 13 = 
7.4ram -1, gives K = 28 G P a m m  -1, re/rf = 4 _+ 0.5, 
b~ = 20 gin. Experimentally, the same results can be 
seen qualitatively from the birefringence pattern in 
Fig. 5. The region of birefringence in the  epoxy ex- 
tends only about one radius out from the fibre. As 
described in the analytical section above, if Equation 
7 were correct, matrix shear would be inversely pro- 
portional to the radial distance from the fibre axis, so 
that ~(x, re) would be z~(x)/4, and not negligible. To 
obtain this equation, Cox assumed that the matrix is 
deformed in pure shear, ignoring traction forces in the 
matrix due to Poisson's ratio differences between fibre 
and matrix. A correct elasticity analysis of the stress 
field [34] and finite element analysis [52] both show 
that the shear stress drops rather quickly in the matrix 
as one moves away from the fibre, decreasing more 
like r-2 than r -  1. Aside from these considerations, it is 
ph3;sically unreasonable that the specimen size should 
influence the interfacial shear stress when the speci- 
men is large. Our result of re/rf = 4 suggests that the 
effective radius re and not the sample outer dimension 
R should generally be used for evaluation of [3. How- 
ever, if the lower value of [3 obtained by fitting the 
corrected pull-out test data is used, very different 
results are obtained, with bi = 200 ~tm and an even 
greater re, unrealistically large (Table II). 

Table II compares 13 and % obtained here using 
Raman spectroscopy with other published results. The 
other authors used regular single fibre pull-out tests 
and Equation 2 to obtain their results. In Fig. 10 [3 is 
plotted against z~ and it can be seen that [3 is propor- 
tional to %. The best fit straight line to the data gives 
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Figure 10 [3 as a function of the interfacial shear strength, % for 
a variety of fibre composite materials (�9 this study; (/~) D6sarmot 
and Favre; ( + ) Pikethly and DoNe, 
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[3=(0.18 +0.01)% This is an entirely empirical 
result, and it seems unreasonable that the stress distri, 
bution should depend on the interfacial shear strength 
at low loads. Fan et al. [20] showed that the stress 
distribution in a poly(diacetylene) fibre/epoxy system 
remained the same when the fibre was coated with 
a silicone release agent to reduce the interfacial shear 
strength. Their results were obtained at low stresses, 
before interfacial failure; this would indicate that the 
empirical result given above relates only to 13 and x~ 
obtained under failure conditions. Since it refers to 
a parameter from shear-lag theory, it is relevant to ask 
what would be the effects of this relation on the 
equations derived in the analytical section. One would 
be that the debonding stress, (the pull-out stress ne- 
glecting friction), CYd, is approximately equal to 
11/rf + %. This indicates that for the range of samples 
considered, which were all well bonded initially, 
differences in pull-out strength relate more to the 
differences in fibre radius than to specific surface inter- 
actions. Thus comparisons between surface treat- 
ments should be made in systems with the same fibre 
radius. 

For comparison, we can also calculate K, bl and 
r'e/rf for other composite systems from the values given 
for [3 in Table II. Because the published information is 
incomplete, the fibre and matrix moduti Ef and Em are 
taken as typical values from handbooks [53-] and from 
manufacturer's data sheets. The results are shown in 
Table II. It can be seen that K is lowest for the 
polyethylene fibres studied here and highest for graph- 
ite fibres, bi and re decrease as % increases for graphite 
fibre composites, bi is only a few times rf while re, 
which is rfexp(bi/rf) may be tens of times rf. Shear 
birefringence in these composites gives an re tens of 
times rf, and larger in lower modulus matrices [43, 54, 
55]. The disagreement between theoretically predicted 
values of bi and re and the experimental evidence 
suggests that neither of the shear-lag treatments of the 
interaction of the interface and the matrix [1, 2] is 
sufficient. It appears that values of re/rf agree reason- 
ably well with those obtained from matrix birefrin- 
gence in the case of systems with lower %, such as 
polyethylene/epoxy and graphite/polyimide. In the 
other systems % is much larger than the yield stress of 
the matrix and this suggests that a purely elastic 
approach cannot be correct. 

5. Conclusions 
We have shown that measurement of polymer fibre 
stress distribution by Raman spectroscopy can be 
applied to the fibre pull-out test. This gives the quasi- 
static interfacial shear stress as a function of position 
along the fibre. The theoretical stress distribution de- 
rived from the interfacial shear-lag theory fits this 
experimental data well with a stress transfer length of 
0.3 mm for a high modulus polyethylene fibre/epoxy 
model composite. The stress distribution during inter- 
facial debonding allows the direct measurement of the 
maximum interracial shear Strength. A value of 
28 MPa for IFSS is obtained from static measurement 



of a debonding front, while the apparent average value 
obtained from the single fibre pull-out test is 24 MPa. 
The analysis of the pull-out tests gives a larger effec- 
tive stress transfer length, 1 ram. If the static stress 
distribution obtained by Raman spectroscopy is taken 
to exist in the pull-out test, the derived IFSS is much 
larger, 50-t-_ 5 MPa. The actual stress distribution 
allows us to calculate other parameters of the system, 
such as the shear-lag constant K and the effective 
interracial radius and thickness, re and bi. 

The smaller stress transfer length gives the effective 
interracial thickness, bi, as 20 gm using K = Gm/bl I-2"1. 
Observation of shear stress birefringence in the optical 
microscope is in qualitative agreement with this. The 
fibre diameter is 28 ~tm, so the interfacial shear stress 
transfer distance normal to the fibre axis is close to the 
fibre diameter. Using K = Gm/reln(re/r~) according to 
Cox [1], re/rf = 4 from K. The larger stress transfer 
length which gives a more acceptable value for IFSS 
gives unreasonably large interfacial thicknesses, bi and 
re obtained for other composites using shear-lag 
theory are also inconsistent with shear birefringence 
experiments when r~ is much larger than the yield 
strength of the matrices. This shows that neither treat- 
ment of the interaction between the interface and 
matrix is satisfactory. Since both are entirely elastic, 
with no consideration of plastic or viscoelastic 
deformation at the interface, this should not be 
surprising. On comparing our values of 13 and % with 
those for other composites, we find empirically that 
13 = (0.18 + 0 . 0 1 ) ~ .  
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